We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Home

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

How do I Simplify Radicals?

By Jane Lapham
Updated: Feb 01, 2024
Views: 37,565
Share

In order to discuss the simplification of radicals, some important terms must be employed. "Radical" is the term we use to refer to the symbol that denotes a square root or "nth" root, and "radicand" is the number inside the radical symbol. A radical is simplified when the radicand has no remaining square root or nth root factors. In order to simplify radicals, the radicand must be factored, and any factor that is a square root or nth root must be reduced and placed in front of the radical sign. For the purposes of this discussion, square roots will be considered.

When a radicand is a perfect square, it is relatively easy to simplify. The square is reduced, and the radical symbol is removed. When the radicand is not a perfect square, the radicand must be factored in order to determine whether any of the factors can be simplified. Any factors that are a perfect square must be simplified and placed in front of the radical symbol. Factors that are not a perfect square will remain beneath the radical symbol.

For example, 7 is the square root of 49. When a radical is presented with a radicand of 49, simplification involves the removal of the radical sign and the replacement of 49 with 7. Sometimes, however, a radical is presented with a radicand that is not a perfect square. In such cases, it might appear impossible to simplify, but factoring of the radicand can prove that simplification is possible.

A radicand that can be factored can be simplified if any of the factors are a perfect square. A radical with a radicand of 54, for example, can be factored into 9 x 6. In order to show the process of simplification, this equation would appear beneath the radical symbol. Once factored into 9 x 6, the perfect square — 9 — can be moved out from beneath the radical symbol and reduced to result in the integer 3. The 3 would then be placed in front of the radical symbol, and 6 would remain underneath the radical symbol — which you would read as "3 times the square root of 6."

When attempting to simplify radicals, you might come across a radical that cannot be simplified. For example, a radical with a radicand of 33 cannot be simplified, because 33 has no square factors. Thirty-three can be factored as 3 x 11, but because neither 3 nor 11 is a perfect square, no portion of the radicand can be removed from beneath the radical symbol.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Related Articles

Discussion Comments
Share
https://www.wise-geek.com/how-do-i-simplify-radicals.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.