We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

How Is the Viscosity of Liquids Found?

By E.A. Sanker
Updated May 17, 2024
Our promise to you
WiseGeek is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGeek, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

In many scientific and industrial situations it is necessary to known the viscosity of liquids. Viscosity is the measure of the liquid’s resistance to flow. Liquids with high viscosity have greater resistance to flow and are not readily deformed by physical stress, while liquids with low viscosity are “thin” and flow easily. The viscosity of liquids can be found by using an instrument known as a viscometer, of which there are many different types. In cases where less precise measurements are acceptable, viscosity can also be measured using simple gravity-based devices.

One of the most common types of viscometers is the falling sphere viscometer. This setup measures the viscosity of liquids by timing how long it takes a small sphere of known density and size to fall a certain distance through a liquid. The sphere is placed into a vertical tube filled with the liquid, and allowed to reach its terminal velocity as it falls. At terminal velocity, the force of drag pulling the sphere upwards is equal to the force of gravity pulling it downwards, and the sphere ceases to accelerate, maintaining a constant speed as it drops. Once the terminal velocity, density of the liquid and sphere, and size of the sphere are known, a formula, Stokes’ law, can be used to calculate the viscosity of the liquid.

Another fairly simple viscometer that is used in laboratory settings is the Ostwald viscometer, also known as the glass capillary viscometer or U-tube viscometer. This U-shaped glass tube device consists of two bulbs, one on the lower part of the left arm of the U, and the other on the high part of the right. It is held vertically as the liquid is drawn up into the upper bulb and then allowed to flow back down to the lower bulb, past two marks on the tube. The viscosity of liquids can be deduced by factoring in the diameter of the glass tube, the amount of time it takes for a liquid to flow past the two marks, and the density of that liquid.

Laboratories that require precision measurements may use more elaborate viscometers that incorporate electronics and measure viscosity using an oscillating piston or vibrating resonator submerged in the liquid. In other settings, such as the paint industry, simpler physical principles can be used to deduce approximate viscosity of liquids. These measurements often rely on a measure known as kinematic viscosity — the resistance of a liquid to flow in the presence of gravity.

The Zahn cup and the Ford viscosity cup are examples of gravity-based devices used to measure kinematic viscosity. In these devices, the liquid — paint, in the case of the Zahn cup, or motor oil for the Ford cup — drains through a small hole in the bottom of a cup as it is held aloft. The liquid flows out in a smooth stream until a certain point where it breaks up into drops. Depending on the viscosity of the liquid, breakage will occur at different times. A measure of kinematic viscosity can be found by multiplying this time in seconds by the cup’s specification number, which is calibrated for the appropriate liquid.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.