We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Are Equilibrium Constants?

By Vincent Summers
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Some chemical actions proceed irreversibly in one direction. One example of this is the burning of hydrogen (H) gas in oxygen (O) to produce water, as shown in the formula 2 H2 + O2 => 2 H2O. The opposite reaction, 2 H2O => 2 H2 + O2 does not occur under these conditions, no matter how much time passes. There are reversible reactions, as the chemist Claude-Louis Berthollet discovered in 1803. Reversible reactions proceed in one direction until the reverse reactions become the favored ones, resulting in equilibrium and making possible the calculation of equilibrium constants.

Such equilibrium constants have been derived from mathematical relationships revealed in time through the efforts of many scientists. These relationships utilize the ratios of concentrations of dissolved species in the reaction system. One simple example is the ionization of acetic acid. Another is the reversible breakdown of the gas dinitrogen tetroxide. In these, as in all examples, equilibrium constants are dependent upon system conditions such as temperature.

Acetic acid dissociates into a positive hydrogen ion plus a negative acetate ion. What makes the reaction a reversible one is that these ions can and will recombine into acid molecules. Other acetic acid molecules then dissociate to replace those that have recombined. The result is equilibrium, leading to a mathematical expression. Ion and acid concentrations relate to the equilibrium constant by the expression K = [H+][Ac-]/[HAc]. Logically, the equilibrium constant for the reverse reaction is the inverse of this K, because the acid concentration becomes the numerator and ion concentrations become the denominator.

For dinitrogen tetroxide, which contains nitrogen (N) and oxygen, the chemical reaction is written N2O4 ⇆ 2 NO2. Any change in proportion of these two species in a closed system depends on the change in system pressure; for each molecule of tetroxide that decomposes, two molecules of nitrogen dioxide form, increasing the pressure. This requires energy and, beyond a point, disfavors the split. The equation reads K = [NO2][NO2]/[N2O4]. As for acetic acid, the equilibrium constant for the reverse reaction, as for all equilibrium constants for all reverse reactions, is the inverse of this K.

Irreversible reactions obey the same mathematical relationships as those reactions that are reversible. In such cases, however, the denominator becomes either 0 or infinity, if one examines the forward reaction or the reverse reaction. This suggests an equilibrium constant having an opposite value, of infinity or of 0. Such information is useless. Also interesting is the possibility of driving a reaction to completion, making it irreversible by removing one of the products from the system, such as through a semipermeable membrane that retains the reactants.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.