We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What are Nodes of Ranvier?

By Victoria Blackburn
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Nodes of Ranvier are constrictions in the myelin sheath that surrounds the axons of nerve cells, or neurons. They occur at approximately one millimeter intervals along the length of the axon. It is thought that these constrictions make the nerve impulse move more quickly along the neuron.

The function of neurons is to carry nerve impulses to the brain from the body and back out to the body from the brain. There are three basic groups of neurons. Motor neurons carry impulses to and from muscles, sensory neurons carry impulses from receptor cells to the spinal cord, and intermediate neurons connect motor and sensory neurons together in the central nervous system. These cells do share come characteristics with other cells, such as having a nucleus, but they also have a specialized shape and structural differences for their function.

Neurons can be very large and have axons that reach great lengths through the body, even over three feet (0.91 m) long. The majority of axons within vertebrates, such as humans and other mammals, are covered by a myelin sheath. This isn’t actually part of the neuron, but is the membrane of the Schwann cell, which is wrapped around the axon. The myelin sheath is made of a fatty substance, which protects and insulatesw the axon, causing impulses to be transmitted more quickly.

Nodes of Ranvier are actually constrictions in the layers of the Schwann cell surrounding the axon. At the nodes of Ranvier, the myelin sheath is completely absent and the axon is often only covered by a very thin membrane. Instead of a nerve impulse traveling through the length of the axon, experiments have shown that it jumps from node to node. The reason the impulse jumps between the nodes is due to the insulating nature of the myelin sheath. This jumping of the impulse makes the transmission along the length of the axon that much quicker.

For a nerve impulse to occur, a neuron needs to be stimulated to such a level that the cell depolarizes. When a part of the axon is depolarized, ions flow in and out of the axon, causing a relative change in its polarity. In the resting state, a neuron has a negatively charged interior relative to outside the cell. When it has been stimulated, this changes and causes the action potential. Nerve impulses move along the axon by the stimulation of subsequent areas due to the action potential of the area beside it.

The evolution of the myelin sheath and nodes of Ranvier in vertebrates has made the transmission of nerve impulses quicker and that much more efficient. In the absence of myelin, the entire axon would undergo the depolarization process and have the action potential pass through it. The insulation of the myelin sheath means that depolarization only occurs at the nodes of Ranvier making the transmission of the action potential a lot faster, particularly over longer distances.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.