We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Are Opioid Receptors?

By Christina Hall
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

An opioid receptor is a G protein-coupled receptor, where the activation of a protein on the outside of a cell activates a cascade of chemical pathways within the cell. Opioid receptors are molecules, or sites, within the body that are activated by opioid substances. These sites were discovered in the early 1970s during research into how opiate medications exert their action within the human body. Opioid receptors are found in abundance in the spinal cord, but are also found in in lower concentrations in places like the digestive tract. There are many opiate substances that are capable of activating the receptor sites, including endogenous opioids made by the human system, like endorphins and enkephalins, as well as external laboratory-made opiates, like hydrocodone and morphine.

Opioid receptors inhibit the transmission of impulse in excitatory pathways within the human body system. These pathways include the serotonin, catecholamine, and substance P pathways, which are all implicated in pain perception and feelings of well-being. Opioid receptors are further subclassified into mu, delta, and kappa receptors. All the classes, while exhibiting differing modes of action, share some basic similarities. They all are driven by the potassium pump mechanism, which is found on the plasma membrane of the majority of cells.

The differing action seen by the mu, delta, and kappa designations is not so much due to varied cellular responses after the potassium pump is activated, but due to the anatomical placement of the receptors. For example, opiate receptors that are located on the spinal cord and in the brain exhibit a pain-dampening effect in the central nervous system, whereas opiate receptors in the respiratory and digestive tracts inhibit other actions like digestion and the cough response. The inhibitory response is activated in all opioid receptors beginning with the inhibition of a common enzyme, adenylate cyclase. The subsequent chemical cascade after this initial chemical reaction reduces the flow of related information to the processing centers within the brain. People suffering from opiate medication withdrawal do not have enough opiate substance to inhibit these excitatory pathways, leading to agitation and an exaggerated pain response.

Much of the research that has been done on opioid receptors focuses specifically on the mu receptor. Stimulation of this receptor is associated with intense feelings of euphoria and serenity. This reaction is thought to be due, in part, to the mu receptor’s cross reaction with the dopamine and gamma-amino butyric acid (GABA) neurotransmitter systems. The body produces an opioid substance that is similar to the mu receptor-bound narcotic, morphine.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.