We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Bypass Diode?

By Paul Scott
Updated Jan 26, 2024
Our promise to you
WiseGeek is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGeek, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A bypass diode is an electronic component typically built into solar panel arrays to protect shaded or weak panels from overheating and potential damage. Solar panel arrays function properly when all the individual panels outputs are balanced. If one or more panels become shaded, weak, or inoperative and no longer produce this average output, an over current condition is caused in them. This condition leads to hot spots in the panels cells which causes a drop in overall array efficiency and will eventually lead to thermal destruction of the non-operational panels. A bypass diode is a simple and cost effective method of avoiding diminished output from causing overheating as it simply cuts the affected panel out of the circuit.

When a solar panel is exposed to sunlight, it becomes what is known as forward biased and transmits its output current in a specific direction. In the dark, the panel becomes reverse biased and current can flow in the opposite direction back into the cells and be dissipated as heat. This situation is addressed by the circuitry of the charge controller which ensures that no energy stored in the system batteries flows back to the panels at night. When a part of an illuminated solar array falls into shadow or becomes defective or weak, exactly the same condition arises. The shaded panels stop producing current and become reverse biased.

The problem with this scenario is that the rest of the array is still pushing output current into the circuit unlike night conditions where the whole array is dormant. This situation sees output current flowing backward into the dormant panel in an uncontrolled manner. This causes the cells to dissipate large amounts of energy as heat which will lead to overheating and eventual thermal destruction of the panel. An additional effect of this sort of unbalanced output is an overall drop in efficiency due to the loss of the shaded cells output and working current dissipated as heat. A cheap and simple way of overcoming this type of situation is the insertion of a bypass diode across each panel.

To address this situation, a bypass diode is placed in parallel with each panel and in a reverse biased direction with its positive terminal attached to the panels negative terminal and vice versa. If the panel is functioning correctly, the diode remains reverse biased and essentially dormant. Should the panel become shaded or otherwise non-functional, it will reverse its polarity and start to draw current in the opposite direction. When this condition arises, the easier flow path offered by the bypass diode will draw the working current around the faulty panel back into the circuit effectively protecting it from a hot spot overload.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.