We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Cistron?

By M. Haskins
Updated May 17, 2024
Our promise to you
WiseGeek is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGeek, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Deoxyribonucleic acid (DNA) is found in the cells of all living things, except certain viruses, and contains the instructions for how to create proteins and other molecules necessary for cellular function. Ribonucleic acid (RNA) helps create these proteins and molecules by copying the genetic code contained in the DNA. There are different types of RNA, including messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA). A cistron, or structural gene, is a sequence of genetic material in either DNA or RNA that contains the genetic code needed to make either RNA molecules, or polypeptides, which can be a protein, or serve as building blocks for proteins. In genetics, the term cistron has often been replaced with the terms intron and exon, which refer to two different types of genetic sequences that can be contained within a structural gene.

Cistrons received their name from the cis-trans test originally used to determine what functions specific sections of genetic material had in various biochemical reactions. The word cistron was then applied to a specific gene that was responsible for creating a certain protein or polypeptide. Later, the meaning of the term was broadened to also include genes that contained the genetic code for creating various kinds of RNA molecules. Cistron can refer to a genetic sequence in both DNA or RNA. A DNA cistron is the genetic code on the gene itself, while an RNA cistron refers to that same genetic sequence when it has been copied, or transcribed, by RNA.

In 1978, biochemist Walter Gilbert suggested in a research article that the term cistron should be replaced by the terms intron and exon. Intron, a word derived from the term "intragenic regions," are non-coding segments of genetic material, meaning they do not contain instructions, or code, for creating molecules such as RNA or proteins. These segments, sometimes called junk DNA, are removed from the genetic material when the RNA is copying the DNA code to create proteins and various types of RNA. Exons, a word derived from the term "expressed regions," are the genetic sequences that do contain instructions for how to create new proteins or RNA molecules.

Most cistrons contain alternating sequences of exons and introns. When the code of a DNA cistron is copied by RNA to produce a new molecule, the introns are sliced away in a process called cis-splicing. The remaining exons are then joined together in a process called trans-splicing, resulting in a molecule of mRNA, rRNA, or tRNA.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

By hamje32 — On Jan 02, 2012

@NathanG - Yeah, but it’s a very involved digital process. It’s not just “copy and paste.” It’s copy and paste and splice.

The exons get spliced together after the junk DNA is thrown out. This is more like grafting pieces of different texts together into a document, to extend your analogy of human transcription.

The amazing thing as you pointed out is that this process can occur over and over again without any errors. The only exception to this I think would be where there were genetic illnesses of some sort or another. In this case I suspect perhaps not all of the junk DNA would get thrown out and therefore you would have a breakdown in the process.

By NathanG — On Jan 01, 2012

I’m surprised that the cistron gene also contains introns. Given the fact that the introns are junk DNA as the article claims, then I wouldn’t expect them to be included in the gene copying process.

I do understand that they are discarded from the process during the copying, but still, I find it unusual that the introns are even included at all.

At any rate, nature is pretty smart at what she does. Copying only what is needed ensures that the resulting genes will be pure of defects. Even humans can’t achieve that kind of perfection.

Human transcription of documents, for example, when done over and over, is prone to be fraught with at least an error or two here or there, in the context of manual transcription. Digital copying is another story altogether of course, and I suspect that the role cistron plays in assisting accurate copying of the genes is more akin to a digital process.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.