We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Fiber-Optic Attenuator?

By Mal Baxter
Updated Jan 21, 2024
Our promise to you
WiseGeek is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGeek, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Light waves travel through optical fibers carrying binary, or digital information, in computer and telecommunications networks. These networks can be made of many linked components between senders and receivers, as well as almost any length of optical fiber. Light created from lasers or light emitting diodes (LED) loses energy along the path of the network; for example through scatter, absorption, interference or reflection. Insertion loss and return loss, or back reflection, are collectively referred to as attenuation; total attenuation is called system loss. A fiber-optic attenuator is a fiber-coupled component that modulates an adjustable loss, permitting the optimal light signal strength for the needs of the network.

Measured in decibels (dB), attenuation can degrade signal clarity or result in network failure. Extrinsic attenuation, or transmission loss, may be caused by external factors imposing on the fiber, such as faulty network configurations. Intrinsic attenuation is created by manufacturing impurities in the fiber that can absorb or scatter light.

Attenuation, or loss, is measured in decibels as transmitted power minus received power. This loss depends also on direction, as results may differ measuring from A to B than loss from B to A. Attenuation across the span of a network can result from factors such as improper connection, bend radius, splicing, or end face preparation. These can result in scattering or interference effects. A fiber-optic attenuator provides desirable attenuation to modulate signal strength, by passively decreasing the amplitude of a light beam without altering the waveform.

Fiber-optic attenuator components serve single-mode and multimode fibers across industry standard product ranges. Plug fiber attenuators utilize male/female ceramic ferrule connectors. Fixed value attenuators function at one loss level, while variable attenuators like the variable optical attenuated jumper (VOA) can adjust loss in a range, as by a turning screw. Patch cord attenuators are fibers that combine the functions of the patch cord and attenuator, reducing costs.

The hybrid fiber-optic attenuator connects male-to-female connectors, while the bulkhead type provides a female-to-female link for two male-connecting fibers. Loopback attenuators allow production testing of simulated losses. Three-step attenuators are passive attenuators that fit onto existing fibers, utilizing a bending radius to achieve attenuation without back reflection. Other types of attenuators include the air gap and clip-on types.

The proper connector type for a given situation is indicated by decibels. For example, reducing optical intensity by 5 decibels would require a -5 dB attenuator. These components are employed in telecommunications networks, local area networks (LAN), and cable television (CATV) systems. Fiber-optic attenuator components can also be used in fiber-optic sensors, testing instruments, and fiber to the home. Compact, environmentally sound, and suffering low return losses, these devices can be embedded into optical fiber networks fitted to the wide variety of industry standard connectors and fibers.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.