We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is a Genome Microarray?

By E.A. Sanker
Updated May 17, 2024
Our promise to you
WiseGeek is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGeek, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

The genome microarray, also known as a deoxyribonucleic acid (DNA) microarray, is a type of genetics technology that allows scientists to determine levels of gene expression. In living organisms, a gene is expressed when the DNA of that gene is decoded through a series of processes into a protein, which serves a specific function in a cell. By measuring levels of gene expression in a given sample, researchers can find out which genes are most active. Microarray technology is used particularly in medicine for learning about the genetic aspects of diseases such as cancer.

When a gene is expressed in an organism, DNA is decoded into a protein through a series of steps. Segments of the gene are transcribed onto a messenger ribonucleic acid (mRNA) template, a single stranded molecule that is complementary to one strand of the original DNA molecule. This mRNA carries the genetic information out of the nucleus of the cell to the site of protein synthesis. A genome microarray reveals which genes are generating the most mRNA — and, by extension, which genes are operating at the highest level of expression.

The genome microarray is a glass or silicon chip with a series of microscopic dots of DNA attached to its surface. The specific sequences of DNA, called probes, are chosen based on the genes that researchers wish to study. A whole-genome microarray contains sequences from across the entire genome, while a focused microarray contains DNA from only certain genes.

In disease research, the microarray would be used in the following way. First, a sample of healthy tissue and diseased tissue would be taken from the subject. MRNA from both samples would be isolated through a series of chemical techniques. Each sample would be combined with a different labeling solution made up of subunits known as nucleotides, modified to include fluorescence, which would then bind to the mRNA molecules to create fluorescent complementary DNA (cDNA). For example, the diseased sample might be labeled with red fluorescence and the healthy sample with green fluorescence.

When each sample is flushed onto a genome microarray, some of the cDNA from the samples hybridize, or bond, with the DNA on the chip. This causes different colors and levels of fluorescence to appear. If a gene in a sample were highly active, for example, it would produce many mRNA, which would appear on the microarray as a strong fluorescent color. By merging the visual sample data using a scanner, researchers can determine whether a particular gene is expressed more in the diseased tissue or the healthy tissue.

In the example above, a green dot would indicate that the gene was expressed more in healthy tissue, since the dominance of the green fluorescence indicates that the healthy sample mRNAs were more numerous than the unhealthy ones. A red dot indicates that the gene was producing more mRNAs in the diseased tissue and was more active under disease conditions. Yellow dots would mean that the gene is expressed about equally in both healthy and diseased tissue. Researchers can use this information to determine which genes are more active in a diseased cell and how such changes affect other genes in the cell. Genome microarrays can be used not only to research and diagnose diseases such as cancer and heart disease but also potentially to learn how to treat them through targeted therapy.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources

Discussion Comments

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.