We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Sonic Anemometer?

By Mal Baxter
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A sonic anemometer is an instrument that measures wind velocity using solid-state ultrasonic transduction. It is designed to emit ultrasonic pulses between opposing transducers in order to measure the effect of a wind medium on the mechanical energy of acoustical vibrations. By electronic monitoring of pulse transit times across a path in pairs or multiple pairs, a sonic anemometer detects wind force and direction and can infer other readings such as temperature and atmospheric changes.

Measurements of pulse transits can be detected in one, two, or three dimensional flows. Resolution is determined by the path length between transducers, which is typically around 4 inches (about 10cm) to 8 inches (about 20cm). Sonic anemometer devices service even turbulent measurements with fine temporal resolution of 20 hertz (Hz) or more.

As the speed of sound can be affected by temperature, these instruments can function as thermometers, though rain has been known to vary speed of sound. The lack of moving parts makes them suitable for use in weather-adverse locations, such as weather stations, buoys, and in other marine and aerospace placements. In design, they may be affixed to brackets, poles, or other support structures.

Measurements of various elements taken together permit the sonic anemometer to function; these include the gap length between transducer faces placed in opposing compass points; the speed of sound; velocities of gas flow; and the variable time it takes for an ultrasound pulse to travel to its opposite transducer. The instrument compares the speeds of pulses, for example, traveling north to south, and south to north respectively. Pulses traveling against the wind arrive later than those traveling with the wind; the two measures are compared and wind speed is calculated. Some instruments also permit diagnostics to check machine function in weather conditions with zero wind speeds. They are sometimes fitted with hygrometers, barometers, and data loggers for analyzing humidity and barometric pressure.

Another key aspect to sonic anemometer technology is the robustness of its physical characteristics. Various designs exist for specialized placement conditions. For example, instruments made for salt water are designed to be corrosion-resistant, a marked advantage over traditional cup-and-vane anemometers. A technology capable of measurements from slight variations of wind conditions to changes due to solar heating on a grand scale has uses in almost any environment.

Others are made to survive extreme temperatures and high wind speeds. Self-heating capabilities protect them from freezing over. Sonic anemometers are also developed to withstand placement in hazardous populated environments such as industrial sites, offshore rigs, arctic stations, and oceangoing vessels.

In field applications, sonic anemometer technology serves other goals besides weather station monitoring. These instruments work in pollution control, building safety, agriculture, and numerous other contexts. They provide a small-scale analog for wind turbines by assessing year-long wind availability for wind-farm planning. In addition, they assist in aviation meteorology, energy, and disaster control. These devices also serve a host of applications in urban, environmental, and civil engineering contexts, and wherever analysis of wind conditions provides a vital element in decision making.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.