We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is an Ultrashort Pulse Laser?

By Ray Hawk
Updated Jan 25, 2024
Our promise to you
WiseGeek is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGeek, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

The ultrashort pulse laser is a generic name for any type of laser that produces pulses or bursts of coherent light in extremely short periods of time, usually measured in picoseconds or femtoseconds. A picosecond is one-trillionth of second and a femtosecond is 1,000 times shorter than a picosecond or one-quadrillionth of a second. These switching rates for the ultrashort pulse laser allows it to overcome some degradation effects that normal non-pulse lasers encounter. This gives them applications in military technology, data communications, and in medical science such as for the killing of viruses in the body through external laser treatment, without harming normal living tissue.

The time range that the pulse duration spans in current ultrashort pulse laser technology as of 2011 is from a few picoseconds for every laser pulse down to 5 femtoseconds. The technology is being driven towards creating an ultrashort pulse laser in the attosecond range, however, which would have pulses that occurred 1,000 times more quickly than a femtosecond laser, or once every quintillionth of a second. Attosecond lasers would allow researchers to track the movement of electrons around atomic nuclei in real time, which would aid in both physics and chemistry research and development.

Whereas early lasers were based on generating beams of coherent light using ruby crystals, femtosecond lasers use titanium-doped aluminum oxide, a type of blue-green sapphire first produced in 1986 for this purpose. Typical pulse energy from such a 20 femtosecond laser is about 3 nanojoules per pulse, or three-billionths of a joule. Since this is an extremely small amount of energy, the beam is amplified using an external source of radiation. Solid-state materials have proven to be the best amplifiers, with ytterbium glass being the most effective and amplifying the pulse up to 100 joules per square centimeter. Early attempts using dyes or neodymium:yttrium aluminum garnet crystals increased pulse energy from 1 millijoule to 0.5 joules per square centimeter.

There are many potential applications for the use of the ultrashort pulse laser. They would take fiber optic communications by light signal transmission to a new level, allowing for much more data to be carried on a pulse beam than fiber optics is currently capable of as of 2011, giving the term broadband a whole new meaning. They could be used as well for ablating materials away from a surface and changing it from a solid to a gas without adding any heat in the process, which would improve upon various industrial cutting and shaping processes for metals and composites. The technology also offers the advantage of serving as an extremely precise form of scalpel in medicine for removing cancerous tumors or repairing the optical cornea in people with failing eyesight.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.