We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Beam Stress?

Mary McMahon
By
Updated Jan 23, 2024
Our promise to you
WiseGeek is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGeek, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Beam stress is pressure applied to a beam that can cause tension, compression, and buckling. These structural members are designed with some elasticity so they give instead of snapping under strain. In the design and construction of a building, it is important to select beams of adequate strength to avoid compromises to structural integrity. If a beam is not strong enough, it can fail, which could create a weak point in a building. Enough weak points, or a poorly positioned one, could cause the whole structure to fall.

Engineers can use a number of different formulas to calculate beam stress. The characteristics of the beam are an important part of the equation, including the length, height, and profile in cross section. Another consideration is the material. Metal beams are stronger than wooden ones, for example, and some metals are more elastic than others. These traits can all have an impact on the way a beam performs when it is subjected to pressure.

Structures add a loading weight to a beam. Beam stress calculations need to determine what will happen to the beam in the finished structure. Other structural members should take some of the weight, reducing strain on a beam, and the configuration within the building can determine how it performs. Beams are used in floors, roofs, and other components of a structure, and need to be very strong in tall buildings because of the incredible weight of the finished structure.

In addition to dead weight, engineers must think about live weight. This includes the beam stress when a building is full of personnel who may be moving and repositioning heavy items, from elevators to manufacturing equipment. Wind and other pressures from the outside can also contribute to live weight. Beam stress calculations may show that a beam cannot perform under some conditions, in which case it will not be adequate for the building's needs.

For any given beam in a building, an engineer can determine the load that will be placed on it, and whether the beam can withstand it. If an engineering check shows that some beams are not sufficient for the need, the engineer may need to make some design changes. These could range from changing a beam for a stronger structural member that can withstand the load to reconfiguring a space to reduce strain on beams. These changes must be made with care, as they can in turn redistribute weight to other beams and cause a problem somewhere else. Computer-aided design software can help with this task.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Mary McMahon
By Mary McMahon

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a WiseGeek researcher and writer. Mary has a liberal arts degree from Goddard College and spends her free time reading, cooking, and exploring the great outdoors.

Discussion Comments

By Feryll — On Apr 08, 2014

If you are interested in learning more about beam stress and how the structural engineers decide what materials are needed for a project then you should look up some of the formulas used to measure beam stress.

Once you have the formula for structural beam deflection and stress you can get a better idea of how engineers figure it all out. And if you like to complete small building projects around home then this information could be useful.

By Drentel — On Apr 08, 2014

I have worked closely with engineers and construction workers. I have had the opportunity to see first hand the materials these professionals work with. One of the things I have learned is that in construction you can't always judge a book by its cover, nor can you judge a beam's strength by the way it looks.

A beam's weight and stiffness are not necessarily the determining factors when measuring how well it will withstand weight and pressure. As this article stated, there are many characteristics that play a part in determining how much weight a beam will hold.

One of the major factors is the flexure or bending capabilities of the beam. Remember the statement "bend, but don't break"? Well, it fits perfectly when talking about beams and their structural worthiness.

Mary McMahon

Mary McMahon

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a...

Learn more
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.