We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Carbon Burning?

Michael Anissimov
By
Updated Feb 02, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

The carbon burning process is a nuclear reaction that happens in the core of massive stars under conditions of tremendous temperature and pressure. Carbon burning only initiates near the end of a star's life. For a star to eventually build up enough pressure in its core to initiate carbon burning, it must must contain at least four solar masses at its birth. The carbon burning only begins after large portions of the star's hydrogen and helium has been burned.

The most abundant element in the universe is hydrogen. So, most stars begin their lifetimes made up mostly of hydrogen. As nuclear fusion ignites in the core of a young star, the hydrogen slowly starts to burn away, its atomic nuclei fused into helium through the p-p chain — in stars the mass of the Sun or less — or the CNO cycle —in more massive stars. This is the nuclear reaction that generates the Sun's heat and light that we see when we step outside every day.

Depending on the size of the star, it burns its nuclear fuel at a different rate. More massive stars have denser and hotter centers and burn their fuel faster. Some of the largest stars deplete most of their hydrogen fuel within only a few million million years, while the Sun is scheduled to continue fusing hydrogen for 4.5 billion years, and the lightest stars will fuse hydrogen for a trillion years. As the helium "ash" builds up, it eventually reaches the critical density to cause helium ignition. The byproducts of the helium burning are carbon and oxygen.

As carbon and oxygen builds up in the core of the star over millions of years of helium burning, eventually a large percentage of the helium is depleted, and the star's core cools down, unable to generate more nuclear power. This cooling down causes the core to contract, further increasing the density and pressure. In stars above about four solar masses, the necessary temperature and density is reached for carbon burning. This heats up the core of the star and it expands to become a red supergiant.

Carbon burning is one of the main reasons why there exist elements heavier than carbon in the universe. The main reaction consists of several components. In one, two carbon nuclei fuse to form a neon atom and a helium atom. Eventually, these break down into sodium and hydrogen, then magnesium and a free neutron. Due to all nuclear processes ongoing simultaneously in the star's core, large amounts of neon, oxygen, and magnesium are produced. The whole carbon burning process only takes about 1000 years.

If the star has between four and eight solar masses of material, it will expel its outer layer as the carbon burning peters out, creating a planetary nebulae and leaving behind a white dwarf core. If it has more than eight solar masses, it will eventually initiate neon burning, the next stage in the evolution of massive stars.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov

Michael is a longtime WiseGEEK contributor who specializes in topics relating to paleontology, physics, biology, astronomy, chemistry, and futurism. In addition to being an avid blogger, Michael is particularly passionate about stem cell research, regenerative medicine, and life extension therapies. He has also worked for the Methuselah Foundation, the Singularity Institute for Artificial Intelligence, and the Lifeboat Foundation.

Discussion Comments

By Wolverival — On Nov 07, 2014

What becomes of a white dwarf core after the carbon-burning process is complete? It's my understanding that our Sun will one day be roughly the same size as Earth, but with a much greater density, approaching that of neutron stars or black holes. But then what?

Michael Anissimov

Michael Anissimov

Michael is a longtime WiseGEEK contributor who specializes in topics relating to paleontology, physics, biology,...

Read more
WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.