We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Differential Thermal Analysis?

Andrew Kirmayer
By Andrew Kirmayer
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Differential thermal analysis (DTA) occurs when two substances are exposed to the same temperatures and thermal changes over time. The test typically includes a reference substance, of which its behavior is known under the applied temperature conditions. Another substance is subjected to the same temperatures and rates of change as the reference. The sample can either absorb heat, generally meaning it is cooler than the reference, or emit heat when it is hotter than the first material. With the data that is plotted, researchers can determine how specific materials react at certain temperatures, as well as over time.

Reference materials typically do not melt or freeze; they need to remain at a steady state for the experiment to work. A differential thermal analysis technique is often done by placing each material in a separate container. Each container is usually in a separate cavity in the same space. Instruments called thermocouples are generally used to record temperature differences between both materials. The thermocouples can detect a change in phase, such as melting or vaporizing, as a signal.

Another method of differential thermal analysis can be the use of conductive pans, with thermocouples attached to them, inside a furnace. Both materials are more often heated equally with time when DTA is carried out like this. The results of the test are typically recorded by using a DTA curve. Differences in temperature between the materials, or a change in temperature over time, can be plotted. The graph often visualizes latent heat of transition that occurs while a substance changes from one state to another; this usually causes the sample’s temperature to temporarily be less than the reference.

Differential thermal analysis often involves testing samples at higher temperatures than other forms of thermal analysis. It can be conducted with materials such as metal, ceramic, glass, and ceramic. Reference materials that are often used include silicon carbide and aluminum. Liquid reference standards sometimes include silicon oil.

Technology in the 21st century has combined differential thermal analysis with the ability to detect loss in material mass as well as change in temperature. Software programs can automatically monitor the process and record the measurements. Before a test, instruments for differential thermal analysis generally have to be calibrated. A separate calibration procedure runs materials known to respond a particular way over given temperature ranges. Local and regional regulations can guide the process of calibration for differential thermal analysis in pharmaceutical, food, or environmental applications.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.