We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Harmonic Motion?

By Michael Smathers
Updated: Jan 22, 2024
Views: 8,762
References
Share

Harmonic motion is the concept of an oscillating, or repeating, system such as a pendulum, a spring or the orbit of a planet around the sun. Systems that are in harmonic motion conserve energy and momentum as long as the internal energy remains the same. In an actual system, i.e., non-ideal, energy loss occurs due to friction even in infinitesimal amounts because of collision with molecules. Two main qualities must exist for a system to experience oscillatory motion: elasticity and inertia; because of Newton's first law, all objects have inertia. Therefore, a source of elasticity must exist, such as a spring.

A simple harmonic system includes one or more oscillating objects that are fixed to a spring or other elastic source, such as a weight attached to a spring. The motion of the object alters speed in a sinusoidal pattern. The elastic force that provides the object momentum increases with the distance from the center of motion; the farther away the object is, the more elastic force is exerted. When the object comes to the end of its motion, the force causes it to move backward at increasing speed to the other end of the oscillating path where the cycle repeats. Simple harmonic motion is used to illustrate the concept, but does not take friction into account.

Dampened motion, by comparison, includes friction or other outside forces that will slow the system down and eventually cause it to reach equilibrium, or no motion. The more friction there is in a system, the quicker an oscillating object will reach equilibrium. Overdamping allows only a few cycles of oscillation before equilibrium; critical damping creates a quick return to equilibrium, such as a shock absorber in a car; and underdamping causes the oscillation to decrease over time. A more viscous medium such as water creates more friction.

Harmonic motion has many applications in day-to-day life. Any type of oscillating system — whether a clock's pendulum, a spring from a car's suspension system or the turning of an engine's flywheel — undergoes a form of dampened oscillation. For example, knowing the force of friction that causes damping allows calculation of the driving force necessary to maintain a constant rate of oscillation in a harmonic system. There are also musical applications; knowing the length of a guitar string, for instance, provides a method of calculating the rate of oscillation when given a driving force, and therefore the frequency of the note played.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources

Editors' Picks

Discussion Comments
Share
https://www.wise-geek.com/what-is-harmonic-motion.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.