We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Heat Transfer Fluid?

By M.J. Casey
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Heat transfer fluid refers to a designed mixture of chemicals that collect and transport heat. These fluids are one of the key technologies that make electrical generation possible from a concentrating solar power system (CSP). Multiple operating criteria must be determined in the selection of a suitable heat transfer fluid.

In concentrating solar power (CSP) systems, an advanced solar power technology, light energy is converted to heat. This is a distinction from photovoltaic solar power schemes, where light energy, captured by photoelectric cells, produces electricity directly. In a CSP process, light is concentrated by mirrors that focus reflected sunlight on receivers, tubing through which the heat transfer fluid travels. The hot fluids are then piped to the power generation station.

One CSP configuration uses parabolic mirrors arranged in exceptionally long rows that look like the blades of large highway snow plows. The heat transfer fluid travels down the horizontal centers of the mirrors, gaining heat as it moves from one mirror to the next. Other configurations use circular flat mirrors that focus the light on receivers strung above the mirrors. Often, the systems have a solar tracking function, where the mirrors can follow the sun’s movement across the sky.

The hot fluid is pumped to a steam-turbine power generating station. There, the fluid heats the water, taking the place of the fuel in the traditional fossil-fueled electrical station. The boiling water circuit is identical, except for the variation in the design of the heat exchanger between the heat transfer fluid and the water. There is no need for a gas manifold and exhaust mechanisms.

The use of the heat transfer fluid is remarkable for two reasons. In this scheme, no fuel was consumed; the energy came from sunlight. Therefore, there are no combustion by-products to be handled. CSP has the solar-fuel advantages of photovoltaic plants, but can potentially achieve higher efficiencies and greater electrical outputs.

Second, heat was literally piped from one place to another. Engineers typically think of heat being a waste product or a byproduct, but not the carrier of energy. Heat conducts so easily through pipe walls and duct work, it cannot be readily transported and is best used at the site of generation. The use of advanced heat transfer fluids makes the transportation of heat feasible.

Heat transfer fluids must be carefully designed to have a high heat capacity, high thermal stability, and a broad range of operating temperatures. They must either remain a liquid or maintain system-compatible properties as a gas. A typical heat transfer fluid has operating specifications of 12oC to 400oC (54oF to 752oF).

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.