We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Single Mode Fiber-Optic Cable?

By Mal Baxter
Updated: Jan 21, 2024
Views: 9,191
Share

Single mode fiber-optic cable carries a single intense beam of parallel light rays usually emitted by an injection laser diode (ILD) through a ray-straightening collimating lens; the ray then travels down a narrow optical channel for long distance digital signal transmission. Typically made from glass, these fibers offer greater bandwidths and less signal loss than multimode fibers. Their cores are thinner than a human hair, measuring about eight microns (µm) in diameter, wrapped in cladding of about 125 µm, and transmit laser light at higher wavelengths of about 1,300 or 1,550 nanometers (nm). With less index refraction than multimode fibers, the intense laser light travels parallel to the axis of the fiber, minimizing pulse dispersions and other signal degradations that occur in the interweaving waves of multimode fiber. These costlier single mode fibers serve long distance needs in telecommunications and cable television networks.

A laser injects the high-bandwidth single mode fiber-optic cable with light of a narrow spectral width. A long strand of glass fiber typically propagates laser transmission with the use of wave division multiplexing (WDM), which divides signals by different wavelengths to increase transmission throughput. This greatly improves the transmission rate of single-mode over multimode fiber, at up to 50 times the potential distance.

The single light wave in the tighter core virtually eliminates distortions from light interference or loss. This generates the highest transmission speeds from transmitter to receiver of any fiber. It functions regardless of electromagnetic interference (EMI) and prohibits eavesdropping by eliminating signal leakage. Light wavelengths around 1,300 nm serve for shorter distances and 1,500 nm serve longer distances.

A transmitting laser diode sends the light signal down the single mode fiber-optic cable. Like ping pong balls through a slightly larger diameter pipe, the light, unable to stop, bounce, escape, or turn back, travels forward through a core surrounded by non-absorptive cladding that is ten times thicker. The wavelength propagates continuously forward with an inability to refract, reflect, or disperse as heat within the waveguide. It has nowhere else to go, except if it encounters absorptive manufacturing flaws or installation or connecting errors.

The signal pulses may travel through regenerators or attenuators until reaching a receiver. There, a photodiode decodes the waveforms about 8,000 times a second, converting them back to electronic computer signals as digital data and audio/video information. This is like reading an entire 24-volume set of encyclopedias in one second.

In single mode fiber-optic cable, this form of low-loss, lowest-order propagation can only work above a certain cutoff wavelength. This is known as single mode (SM) step index. This means only straight light beams are selected for single mode transmission; they don't intermingle or bounce at different rates in mulitmode wave propagations, as through the wider cores of multimode fibers.

Different types of single mode fiber-optic cable include cutoff or dispersion-shifted fiber, non-zero dispersion-shifted, low water peak fiber, and others. Also known as mono-mode or uni-mode fiber, it is primarily used for wide area networks (WAN); however, it has received increased attention from local area networks (LAN), which extend their reach over greater distances in settings like university or corporate campuses. These higher-cost cables have limiting factors such as bending radius, so they must be planned out carefully before installation by a skilled technician.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wise-geek.com/what-is-single-mode-fiber-optic-cable.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.