We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Specific Weight?

By H.R. Childress
Updated Jan 27, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Specific weight, also called unit weight or sometimes weight density, describes the weight of a substance relative to its volume. It is often used as a characteristic property of fluids and soils in the fields of fluid mechanics and soil mechanics, respectively. The specific weight of any given substance is not constant — it can change based on temperature and pressure.

The lower-case Greek letter gamma, which looks something like a "y," usually represents specific weight in equations. Typically, the equation "gamma = rho*g" is used to calculate specific weights. Rho, a Greek letter which looks like a rounded "p," represents the density of the substance — the mass of the substance relative to its volume. Sometimes called the local constant, "g" represents the acceleration due to gravity, which is 32.2 feet per square second (about 9.81 meters per square second) at the Earth's surface.

Standard units of density are slugs per cubic foot (slugs/ft^3) or pounds-mass per cubic foot (lbm/ft^3) in imperial units and kilograms per cubic meter (kg/m^3) in metric units. The constant "g" is measured in feet per square second (ft/s^2) or meters per square second (m/s^2). Multiplying density by "g" results in units of pounds-force per cubic foot (lbf/ft^3) or Newtons per cubic meter (N/m^3).

As an example, water has a density of 1,000 kg/m^3 in metric units. Multiplying by 9.81 m/s^2 results in a specific weight of 9,810 N/m^3. In imperial units, the density of water is 1.94 slugs/ft^3, and multiplying by 32.2 ft/s^2 results in 62.4 lb/ft^3. This calculation is not used, however, when density is measured in lbm. One pound-mass is equivalent to one pound-force, so if a substance has a density of 10 lbm/ft^3, it will have a specific weight of 10 lbf/ft^3.

When used in reference to soils, specific weight is generally referred to as unit weight and is calculated somewhat differently. Two types of unit weight are typically calculated for soil samples: the bulk unit weight and the dry unit weight. Bulk unit weight is the unit weight of the sample when the pores in the soil contain both air and water. To determine dry unit weight, laboratory equipment is used to completely dry out a soil sample so it contains no water. Bulk unit weight is defined as the total weight divided by the total volume, while dry unit weight is the dry weight divided by the total volume.

Density changes based on pressure and temperature, and since specific weight is based on density, it can change as well. The density decreases as the temperature increases because the molecules in the substance move farther apart. Density increases as pressure increases because pressure forces the molecules closer together.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.