We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Health

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is the Purpose of an Action Potential?

By Sarah Kay Moll
Updated: Feb 07, 2024
Views: 25,450
Share

The brain is made up of two types of cells. Glial cells act as support cells for neurons, the cells responsible for sending signals in the brain. Action potentials — electrical signals that travel across neurons — are the means for receiving, analyzing, and conveying information in the brain. They have an amplitude of about 100 millivolt (mV) and last for around 1 millisecond (ms).

A neuron is made up of four distinct parts. The cell body contains the nucleus and other cell structures. Dendrites branch out from the cell body like the branches on a tree, and receive information from other neurons. The axon is a long extension on one side of the cell body, similar to the trunk of the tree, and it ends in the presynaptic terminals.

This type of cell is polarized, meaning the electrical charge inside the neuron is different from the charge outside the cell. Dendrites receive signals from other neurons that can change the charge inside the cell. A neuron at rest is more negatively charged than the surrounding area. Excitatory postsynaptic potentials bring the charge closer to zero, and inhibitory postsynaptic potentials make the charge even more negative.

At the axon hillock, all of these potentials are averaged in one of two ways: across time or across space. The further away from the axon hillock a potential is, the less effect it has. The longer a potential lasts, the more effect it has on the axon hillock.

If the averaged charge from the postsynaptic potentials reaches a certain threshold, an action potential is generated. Postsynaptic potentials can be different sizes depending on the signals received by the dendrites, but the action potential operates on an all-or-none principle, meaning there is no gradient — either there is one or there is not.

The action potential is an electrical signal that travels down the neuron’s axon. The axon is coated in a myelin sheath, which, similar to the insulation on an electrical wire, allows the signal to travel faster. It carries the electrical signal to the presynaptic terminals, which then communicate to another neuron.

Between two neurons there is a gap called a synapse. When the presynaptic terminal on a neuron receives a signal from an action potential, it sends chemicals called neurotransmitters into the synapse. These chemicals are absorbed by another neuron. Neurotransmitters are the mechanism for sending signals between neurons.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
By Kat919 — On Oct 19, 2011

A college professor of mine told me that a neuron firing is like flushing a toilet. I can't remember all the similarities, but I know that one related to the refractory period. Once you flush a toilet, you can't flush it again right away, and a neuron can't fire twice in rapid succession, either.

Some other similarities were that both are all or none (you can't half flush a toilet, and a neuron can't half fire) and both go in only one direction (fortunately, in the case of a toilet!).

Share
https://www.wise-geek.com/what-is-the-purpose-of-an-action-potential.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.