We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Ubiquitin?

By Jo Dunaway
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

First identified in 1975, ubiquitin (Ub) is found as a protein isolated in calf sweetbread, and the assumption was it had something to do with maturing white blood cells. Later found in all tissues of eukaryotic organisms of many species, it was given the name ubiquitin, which derives from the Latin word for “everywhere.” It is a regulatory protein responsible for protein recycling that carries out its responsibilities by binding to proteins and marking them for destruction. This tag directs the tagged proteins to the proteasome complex that degrades and recycles these, or the tag may direct to other proteins for modification, deoxyribonucleic acid (DNA) repair, or gene transcription. It is considered the most conservative of all proteins because its 76 amino acids sequence differs very slightly across all species, whether plant, animal or human.

The process by which this protein marks proteins makes use of three enzymes: E1, which activates Ub and puts it into an reactive state, E2, which then catalyzes the attachment of Ub to proteins, and E3, a ubiquitin-ligase that identifies the protein. In this enzyme cascade, Ub is then capable of dissipating the protein’s protections against proteasomes, so that the proteasome can quickly degrade and destroy it. Accumulations of aberrant proteins within a cell often arise from DNA mutations or mistranslations of genes. As these aberrant proteins can wreak havoc with the functions of a cell, this havoc is believed to be the underlying distress that leads to diseases such as Alzheimer’s, Huntington’s, and Parkinson’s diseases. Making use of proteasome-mediated degradation is one of the ways a cell can achieve repair and expulsion of the aberrant proteins.

When ubiquitin attaches to a protein, it can draw more ubiquitin molecules to the scene to attach as well. These interact with it and sometimes perform modifications such as the destruction of sperm cells after fertilization occurs, regulating the degradation until destruction, or antigen processing and DNA transcriptions and repairs. It has such a large variety of functions within the proteins of a cell that it has led some to believe it has a role in nearly every cellular process. There are also many Ubiquitin-Like proteins (UBLs) that have divergent roles in modifications of cells. One is an interferon-stimulating gene modifier, another is a neuron cell downregulator, and yet another deals with the F antigens in human leukocytes.

Histology departments can use antibodies to this substance to identify cells with abnormal accumulations of aberrant proteins in cells and use these antibodies as disease markers. Research has developed this antigen use to detect neurofibrillary tangles associated with Alzheimer’s, inclusions in motor neuron diseases, and mallory bodies in alcoholic liver disease. There are some genetic disorders associated with ubiquitin. One is a mutation of an E3 ubiquitin-ligase that leads to autosomal-recessive growth retardation called 3M Syndrome. Another is a misregulation and disruption of a gene in Liddle’s Syndrome, which causes hypertension. A gene disruption is also believed to be the cause of Angelman’s Syndrome, once again traced to the E3 ubiquitin-ligase disfunction.

Nearly 50% of all cancerous tumors have been found to be deficient of a particular protein that has been dubbed the “guardian of the genome.” As long as cells can produce this particular gene, cancer is prohibited from developing in a cell. Ubiquitin and its E3 ubiquitin-ligase bonds with this particular protein in a cell and this binding produces a DNA repair of the protein and allows it to recover its viability. The ubiquitin-proteasome system also reduces the size of virus proteins for destruction to aid the body’s immune system. Just in May, 2011, it was announced at the American Association for Cancer Research’s 102nd Convention that the protein's enzyme processes has been linked to assisting the body not to reject chemotherapies in non-small cell lung cancers.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.